CENTERS FOR DISEASE CONTROL

MORBIDITY AND MORTALITY WEEKLY REPORT

January 17, 1986 / Vol. 35 / No. 2
17 Update: Acquired Immunodeficiency Syndrome - United States
21 Need for Malaria Prophylaxis by Travelers to Areas With Chloroquine-Resistant Plasmodium falciparum
28 Update: Influenza Activity - United States, Worldwide
29 Changes in Premature Mortality United States, 1983-1984

Current Trends

Update: Acquired Immunodeficiency Syndrome - United States

Between June 1, 1981, and January 13, 1986, physicians and health departments in the United States notified CDC of 16,458 patients (16,227 adults and 231 children) meeting the acquired immunodeficiency syndrome (AIDS) case definition for national reporting (1-3). Of these, $8,361(51 \%$ of the adults and 59% of the children) are reported to have died, including 71% of patients diagnosed before July 1984. The number of cases reported each 6-month period continues to increase (Figure 1), although not exponentially, as evidenced by the lengthening case-doubling times (Table 1). Cases have been reported from all 50 states, the District of Columbia, and three U.S. territories.

Adult patients. Among adult AIDS patients, 60% were white; 25%, black; and 14\%, Hispanic. Ninety percent were 20-49 years old, and 93% were men. Although the race, age, and sex distribution of adult AIDS patients has remained relatively constant over time, significant changes have occurred in the distribution of specific diseases reported. Pneumocystis

FIGURE 1. Acquired immunodeficiency syndrome cases and known deaths, by 6 -month period of report to CDC - United States, through January 13, 1986

*Data incomplete.

AIDS - Continued
carinii pneumonia (PCP) continues to be the most common opportunistic infection reported among AIDS patients, accounting for 43% of reported opportunistic diseases; incidence of PCP continues to increase relative to other reported opportunistic diseases among AIDS patients ($p<0.0001$). PCP accounted for 35\% of the diagnosed AIDS-associated diseases before January 1984 and 47\% of those diagnosed from January 1985 to December 1985. The increase in PCP was associated with a decrease in Kaposi's sarcoma (KS), the second most common AIDS-associated opportunistic disease. Before December 1984, KS accounted for 21% of reported diagnoses; between January 1985 and December 1985, KS accounted for 13% of reported diagnoses. Among all AIDS patients, 63% have been diagnosed with PCP; 24\%, with KS; 14%, with candida esophagitis; 7%, with cytomegalovirus (CMV) infections; 7%, with cryptococcosis; 4%, with chronic herpes simplex; 4%, with cryptosporidiosis; 3%, with toxoplasmosis; and 3%, with other opportunistic diseases only. These values tend to underestimate the number of diseases diagnosed in a given patient, because health-care providers frequently do not provide follow-up information on diseases that occur after the case has initially been reported.

A total of 15,243 (94%) AIDS patients can be placed in groups* that suggest a possible means of disease acquisition: men with homosexual or bisexual orientation who have histories of using intravenous (IV) drugs (8% of cases); homosexual or bisexual men who are not known IV drug users (65\%); heterosexual IV drug users (17\%); persons with hemophilia (1\%); heterosexual sex partners of persons with AIDS or at risk for AIDS (1%); and recipients of transfused blood or blood components (2%). The remaining 984 (6%) have not been classified by recognized risk factors for AIDS.

AIDS patients reported as not belonging to recognized risk groups are investigated by local health officials to determine if possible risk factors exist. Since 1981, 1,206 AIDS patients reported to CDC were initially identified on the original case report form as not belonging to a risk group. Of these individuals, 398 were from countries where heterosexual transmission may account for many AIDS cases. Of the remaining 808, information was incomplete on 178 patients due to: death (116), refusal to be interviewed (24), or loss to follow-up (38). Two hundred ninety-seven cases are still under investigation. Interviews or other follow-up information were available on the remaining 333 patients. Based on this information, risk factors were ultimately identified in 197 (59\%) individuals; 25 (8%) were found not to meet the criteria of the surveillance definition for AIDS and no risk was identified on 111 (33\%) AIDS patients. In interviews of the 111 patients for whom no risk was identified, 39 (35%) gave
*Patient groups are hierarchically ordered; patients with multiple risk factors are tabulated only in the group listed first.

TABLE 1. Acquired immunodeficiency syndrome cases, by date of report and doubling time - United States, through January 13, 1986

Cumulative cases reported	Date	Doubling time (months)
129	September 1981	-
257	February 1982	5
514	July 1982	5
1,029	January 1983	6
2,057	August 1983	7
4,115	April 1984	8
8,229	February 1985	10
16,458	January 1986	11

AIDS - Continued

histories of gonorrhea and/or syphilis, indicating that these AIDS patients were at risk for other sexually transmitted infections. Of 57 men interviewed, 15 (26\%) gave histories of sexual contact with a female prostitute.

Reported cases have increased in all patient groups (Table 2). The relative proportion of AIDS cases among most risk groups has remained stable (Table 3). The proportion of AIDS cases associated with blood transfusions has increased from 1% to $2 \%(p=0.015)$. Due to the long period between infection with human T-lymphotropic virus type III/lymphadenopathyassociated virus (HTLV-III/LAV) and development of AIDS, the impact of serologic screening of blood donations and deferral of those at increased risk cannot be expected to be reflected yet in national AIDS reporting. In the groups not classified by recognized risk factors, the proportion of AIDS patients born outside the United States has declined from 4\% to 2\% (p <0.0001).

Pediatric patients. Among 231 AIDS patients under 13 years old, 19\% were white; 60\%, black; and 20%, Hispanic. Fifty-five percent were male. Fifty-eight percent were diagnosed with PCP; 19\%, with disseminated CMV; 15\%, with candida esophagitis; 6%, with cryptosporidiosis; 4\%, with KS; and 22\%, with other opportunistic diseases only. One hundred seventyfour (75\%) pediatric patients came from families in which one or both parents had AIDS or were at increased risk for developing AIDS; 33 (14\%) had received transfusions of blood or blood components before onset of illness, and 11 (5\%) had hemophilia. Risk-factor information on the parents of the 13 (6%) remaining cases is incomplete. Although 57% of pediatric patients have been reported within the last year, 72% were actually diagnosed before 1985. Pediatric patients have been reported from 23 states, Washington, D.C., and Puerto Rico; cases reported per state ranged from one to 91 (median three). Seventy-five percent of the cases have been reported from New York, Florida, New Jersey, and California.
Reported by State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases, CDC.
TABLE 2. Acquired immunodeficiency syndrome cases reported by year and yearly percent increases, by patient group - United States, through January 13, 1986

Patient group	$\begin{aligned} & \text { Before } \\ & \frac{1 / 14 / 82}{\text { No. }} \end{aligned}$	$\begin{aligned} & 1 / 14 / 82 \\ & 1 / 13 / 83 \end{aligned}$		$\begin{aligned} & 1 / 14 / 83- \\ & 1 / 13 / 84 \end{aligned}$		$\begin{aligned} & 1 / 14 / 84- \\ & 1 / 13 / 85 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 1/14/85- } \\ & \frac{1 / 13 / 86}{\text { No. }(\% \operatorname{lnc})^{*}} \end{aligned}$	Total
		No.	(\% Inc)*	No.	(\% Inc) ${ }^{\text {* }}$	No.	(\% Inc)*		
Adult									
Homosexual/bisexual men and IV drug users	16	66	(312.5)	211	(219.7)	418	(98.1)	599 (43.3)	1,310
Homosexual/bisexual men not IV drug users	178	473	(165.7)	1,341	(183.5)	2,939	(119.2)	5,669 (92.9)	10,600
IV drug users	22	138	(527.3)	392	(184.1)	785	(100.3)	1.429 (82.0)	2,766
Hemophilia patients	0	7	(0.0)	10	(42.9)	38	(280.0)	69 (81.6)	124
Heterosexual contacts	1	10	(900.0)	18	(80.0)	53	(194.4)	100 (88.7)	182
Transfusion recipients	0	6	(0.0)	28	(366.7)	56	(100.0)	171 (205.4)	261
None of the above/other:									
No identified risks;	3	28	(833.3)	76	(171.4)	131	(72.4)	348 (165.6)	586
Born outside U.S. ${ }^{\dagger}$	7	48	(585.7)	85	(77.1)	114	(34.1)	144 (26.3)	398
Subtotal	227	776	(241.9)	2,161	(178.5)	4,534	(109.8)	8,529 (88.1)	16.227
Pediatric	0	16	(0.0)	35	(118.8)	48	(37.1)	132 (175.0)	231
TOTAL	227	792	(248.9)	2,196	(177.3)	4,582	(108.7)	8,661 (89.0)	16,458

[^0]
AIDS - Continued

Editorial Note: The incidence of AIDS continues to increase. In 1982, 747 cases were reported; in 1983, 2,124 were reported (a 184\% increase); in 1984, 4,569 were reported (a 115% increase); and in 1985, 8,406 were reported (an 84% increase). From analyses of past trends, further increases are expected for 1986; however, the percentage increase in 1986 is likely to be smaller than that noted in 1985.

The number of AIDS cases that have not been classified into previously identified risk groups is not increasing proportionately faster than the number of cases in identified risk groups. Past experience would suggest that many cases currently under investigation will be reclassified.

Currently reported AIDS cases have resulted from HTLV-III/LAV exposure up to 7 years before diagnosis (4); the possibility of longer incubation periods cannot be excluded. Since HTLV-III/LAV infection persists in an individual, persons previously infected continue to remain at risk for developing AIDS. Due to the long period between infection and development of AIDS, transfusion-associated cases are expected to continue (4). However, voluntary donor deferral by those at increased risk for AIDS and serologic testing of donated blood and plasma for HTLV-III/LAV antibody-implemented in March 1983 and spring 1985, respectivelyhave greatly reduced the potential for HTLV-III/LAV transmission through transfusion (4-6).

The increase in previously diagnosed pediatric AIDS cases reported within the past year reflects improved reporting as well as inclusion in the case definition of histologically confirmed

TABLE 3. Distribution by patient group of reported acquired immunodeficiency syndrome cases, by date of report - United States, through January 13, 1986

Patient group	$\begin{gathered} \text { Before } \\ 1 / 14 / 84 \\ \hline \end{gathered}$		$\begin{aligned} & 1 / 14 / 84- \\ & 1 / 13 / 85 \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 14 / 85- \\ & 1 / 13 / 86 \end{aligned}$		Total	
	No.	(\%)	No.	(\%)	No.	(\%)	No.	(\%)
Adult								
Homosexual/bisexual men and IV drug users	293	(9.3)	418	(9.2)	599	(7.0)	1.310	(8.1)
Homosexual/bisexual								
IV drug users	552	(17.4)	785	(17.3)	1,429	(16.8)	2.766	(17.0)
Hemophilia patients	17	(0.5)	38	(0.8)	69	(0.8)	124	(0.8)
Heterosexual contacts	29	(0.9)	53	(1.2)	100	(1.2)	182	(1.1)
Transfusion recipients	34	(1.1)	56	(1.2)	171	(2.0)	261	(1.6)
None of the above/other:								
No identified risks;	107	(3.4)	131	(2.9)	348	(4.1)	586	(3.6)
Born outside U.S.*	140	(4.4)	114	(2.5)	144	(1.7)	398	(2.5)
Subtotal	3,164	(100.0)	4,534	(100.0)	8.529	(100.0)	16.227	(100.0)
Pediatric								
Parent with AIDS or at increased								
risk for AIDS	38	(74.5)	40	(83.3)	97	(73.5)	175	(75.8)
Hemophilia patients	3	(5.9)	1	(2.1)	7	(5.3)	11	(4.8)
Transfusion recipients	6	(11.8)	6	(12.5)	21	(15.9)	33	(14.3)
None of the above/other	4	(7.8)	1	(2.1)	7	(5.3)	12	(5.2)
Subtotal	51	(100.0)	48	(100.0)	132	(100.0)	231	(100.0)
TOTAL	3,215	(100.0)	4,582	(100.0)	8,661	(100.0)	16,458	(100.0)

[^1]diagnoses of chronic lymphoid interstitial pneumonitis in children under 13 years of age (3). Since most pediatric AIDS cases result from perinatal transmission of HTLV-III/LAV, the race/ethnicity and geographic distribution of pediatric AIDS patients is similar to that of reported AIDS cases among adult females.

Planned prospective studies of incidence and prevalence of HTLV-III/LAV infection should determine whether current reports of patients meeting the AIDS case definition for national reporting accurately reflect the distribution of infected persons. Persons meeting the AIDS case definition are only a small percentage of all persons infected with HTLV-III/LAV (7). CDC uses the existing case definition for surveillance purposes, because other manifestations of HTLV-III/LAV infection are less specific and less likely to be consistently reported nationally.

References

1. CDC. Update: acquired immunodeficiency syndrome (AIDS) - United States. MMWR 1984;32: 688-91.
2. Selik RM, Haverkos HW, Curran JW. Acquired immune deficiency syndrome (AIDS) trends in the United States, 1978-1982. Am J Med 1984;76:493-500.
3. CDC. Revision of the case definition of acquired immunodeficiency syndrome for national reporting United States. MMWR 1985;34:373-5.
4. Peterman TA, Jaffe HW, Feorino PM, et al. Transfusion-associated acquired immunodeficiency syndrome in the United States. JAMA 1985;254:2913-7.
5 CDC. Prevention of acquired immune deficiency syndrome (AIDS): report of inter-agency recommendations. MMWR 1983;32:101-4.
5. CDC. Update: Public Health Service workshop on human T-lymphotropic virus type III antibody testing-United States. MMWR 1985;34:477-8.
6. Curran JW, Morgan WM, Hardy AM, Jaffe HW, Darrow WW, Dowdle WR. The epidemiology of AIDS: current status and future prospects. Science 1985;229:1362-7.

Need for Malaria Prophylaxis by Travelers to Areas With Chloroquine-Resistant Plasmodium falciparum

On April 12, 1985, new recommendations for malaria prophylaxis were published by CDC in response to evidence that weekly use of pyrimethamine/sulfadoxine (Fansidar ${ }^{\circledR}$) for malaria prophylaxis was associated with fatal cutaneous reactions in 1/18,000 to 1/26,000 users (1). These revised recommendations emphasized the weekly use of chloroquine or amodiaquine as the mainstay of chemoprophylaxis and suggested that the weekly prophylactic use of Fansidar ${ }^{\circledR}$ be limited to travelers at very high risk of exposure to chloroquine-resistant Plasmodium falciparum, mainly longer-term travelers to eastern and central Africa. It was further recommended that short-term (3 weeks or less) travelers to areas with chloroquine-resistant P. falciparum carry three tablets (adult dose) of Fansidar ${ }^{\circledR}$ to take presumptively in the event of a febrile illness when professional medical care is not readily available. Finally, the importance of personal protection from mosquito contact by use of insect repellants, insect sprays, nets, and screens was stressed.

To date, 60 cases of P. falciparum infection have been reported to CDC. with onset of illness in 1985 among U.S. travelers who acquired their infection in Kenya, where chloroquineresistant P. falciparum is widely prevalent. Review of the preventive measures taken by these 60 persons revealed that chemoprophylaxis had been used by 46 (77%). Thirty-nine (65%) persons had used chloroquine alone weekly for prophylaxis. Weekly prophylaxis with Fansidar® ${ }^{\circledR}$ and chloroquine had been used by seven (12\%). Of concern is that only four (24\%) of 17 malaria patients investigated who had traveled to Kenya after April 1985 were aware of the

Malaria Prophylaxis - Continued
recommendation for presumptive treatment with Fansidar®. Furthermore, only seven (41\%) of these 17 had used insect repellants.

The current recommendations are more complicated than before because they reflect an effort to balance the risks and benefits of prophylactic regimens for travelers to various areas. It is essential that health-care providers and travelers consider the possibility that a febrile illness may be malaria, even when chloroquine prophylaxis has been used. Further, it is important that the three-tablet adult treatment dosage of Fansidar ${ }^{\circledR}$ and the indications for its use are explained thoroughly to travelers because responsibility is placed on them to recognize a potential malaria infection and, if necessary, treat themselves while abroad.

The current CDC guidelines for malaria prophylaxis for travelers $(1,2)$ contain detailed recommendations for travelers to different destinations, taking into account the risk of malaria infection. Health-care providers are encouraged to report all malaria patients to state and local health departments, with particular attention to travel histories and chemoprophylaxis. CDC continues to monitor both the level of implementation of the current recommendations and their effect on the occurrence of P. falciparum infections in U.S. travelers.
(Continued on page 27)

TABLE I. Summary-cases specified notifiable diseases, United States

Disease	2nd Week Ending			Cumulative, 2nd Week Ending		
	$\begin{gathered} \text { Jan. } 11, \\ 1986 \\ \hline \end{gathered}$	$\text { Jan. } 12$	$\begin{gathered} \text { Median } \\ 1981-1985 \end{gathered}$	$\begin{gathered} \text { Jan. } 11 . \\ 1986 \end{gathered}$	$\begin{gathered} \text { Jan. } 12, \\ 1985 \\ \hline \end{gathered}$	$\begin{gathered} \text { Median } \\ 1981-1985 \end{gathered}$
Acquired Immunodeficiency Syndrome (AIDS)	330	66	N	507	153	N
Aseptic meningitis	93	81	89	153	127	167
Encephalitis: Primary (arthropod-borne \& unspec.) Post-infectious	17	10	13	25	21 5	26
Gonorrhea: Civilian	14,607	14,845	18,014	25,784	25.700	36.179
Military	278	378	648	428	568	1.017
Hepatitis: Type A	285	313	329	543	546	630
Type B	340	355	355	663	621	621
Non A, Non B	50	63	N	94	110	N
Unspecified	73	60	127	132	120	217
Legionellosis	13	14	N	19	21	N
Leprosy	13	-	2	13	5	6
Malaria	6	9	9	13	13	21
Measles: Total ${ }^{+}$	27	7	7	27	15	16
Indigenous	25	3	N	25	10	N
Imported	2	4	N	2	5	N
Meningococcal infections: Total	56	36	54	89	65	96
Civilian Military	56	36	54	88	65	96
Mumps	47	49	75	56	77	121
Pertussis	25	32	19	47	39	31
Rubella (German measles)	5	3	12	6	9	26
Syphilis (Primary \& Secondary): Civilian	357	412	581	634	686	1.137
Military	6	6	6	7	9	16
Toxic Shock syndrome		8	${ }^{\text {N }}$	9 9	12 375	N
Tuberculosis	231	234	311	372	375	563
Tularemia	3	7	1	3	7	3
Typhoid fever	6	2	11	7	5	15
Typhus fever, tick-borne (RMSF)	2	1	1	2	1	3
Rabies, animal	99	70	77	119	122	150

TABLE II. Notifiable diseases of low frequency, United States

	Cum 1986		Cum 1986
Anthrax	-	Leptospirosis (Hawaii 2)	4
Botulism: Foodborne	-	Plague	-
Infant (Calif. 1)	2	Poliomyelitis, Paralytic	-
Other	-	Psittacosis	-
Brucellosis (Ala. 1)	1	Rabies, human	-
Cholera	-	Tetanus	1
Congenital rubella syndrome	1	Trichinosis	-
Congenital syphilis, ages <1 year Diphtheria	-	Typhus fever, flea-borne (endemic, murine)	-

${ }^{\circ}$ One of the 27 reported cases for this week was imported from a foreign country or can be directly traceable to a known internationally imported case within two generations.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
January 11, 1986 and January 12, 1985 (2nd Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis (Viral), by type				Legionellosis	Leprosy
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	Cum. 1985	1986	1986	1986	1986	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$
UNITED STATES	507	93	25	-	25.784	25,700	285	340	50	73	13	13
NEW ENGLAND	13	7	-	-	516	961	6	34	-	3	-	-
Maine	-	1	-	-	26	35	-	2	-	-	-	-
NH	-	1	-	-	10	25	-	-	-	-	-	-
Vt	-	-	-	-	7	9	-	$\stackrel{-}{-}$	-	$\overline{-}$	-	-
Mass	9	2	-	-	172	249	6	28	-	3	-	-
R.I	2	3	-	-	55	91	-	4	-	-	-	-
Conn	2	-	-	-	246	552	-	-	-	-	-	-
MID ATLANTIC	210	28	4	-	4,632	3.072	36	38	4	4	-	-
Upstate $\mathrm{N} Y$	17	12	2	-	279	1.319	22	9	1	2	-	-
NY City	144	1	1	-	3.102	1.319	1	1	-	-	-	-
NJ	33	7	-	-	308	363	4	8	1	1	-	-
Pa	16	8	1	-	943	1,390	9	20	2	1	-	-
E N CENTRAL	23	10	7	-	3.626	2.870	10	25	2	1	4	-
Ohio	18	4	5	-	911	943	3	6	-	-	-	-
Ind	4	-	-	-	565	249	3	-	-	+	-	-
III	-	-	-	-	511	697	-	$\stackrel{-}{\circ}$	-	-	-	-
Mich	1	6	2	-	1,379	906	4	19	2	1	4	-
Wis	-	-	-	-	260	75	-	-	-	-	-	-
W N CENTRAL	10	1	-	-	1.505	1,651	12	8	1	-	2	-
Minn	5	-	-	-	289	166	-	-	-	-	-	-
lowa	-	-	-	-	216	145	1	-	-	-	1	-
Mo	3	-	-	-	690	761	2	2	1	-	-	-
N Dak	1	-	-	-	22	7	-	-	-	-	i	-
S Dak	-	-	-	-	21	35	7	-	-	-	1	-
Nebr	-	-	-	-	15	120	1	3	-	-	-	-
Kans	1	1	-	-	252	417	1	3	-	-	-	-
S ATLANTIC	48	16	5	-	4,814	5,942	9	47	12	4	2	-
Del	3	2	-	-	130	123	2	1	1	1	,	-
Md	8	7	3	-	897	884	3	5	5	1	-	-
D C	9	1	-	-	511	461	-	6	i	-	-	-
Va	-	2	-	-	525	686	-	4	1	1	2	-
W Va	-	-	-	-	88	111	1	2	-	1	-	-
N C	2	3	2	-	673	902	1	14	-	-	-	-
SC	2			-	837	921	-	6	2	-	-	-
Ga	-	1	-	-	-	-	2	6	2	-	-	-
Fla	24	-	-	-	1.153	1,854	-	3	1	-	-	-
ES CENTRAL	3	15	4	-	2,140	2.075	3	59	5	1	1	-
Ky	3	1	-	-	289	213	1	4	1	-	-	-
Tenn	-	2	-	-	906	1,107	1	20	4	-	-	-
Ala	-	12	4	-	302	555	1	35	-	1	1	-
Miss	-	-	-	-	643	200	-	-	-	-	-	-
W S CENTRAL	51	-	-	-	3.045	4.177	-	3	-	2	-	-
Ark	4	-	-	-	288	408	-	3	-	-	-	-
La	4	-	-	-	669	802	-	-	-	-	-	-
Okla	2	-	-	-	444	465	-	-	-	1	-	-
Tex	41	-	-	-	1,644	2.502	-	-	-	1	-	-
MOUNTAIN	7	3	1	-	893	939	22	20	6	4	1	-
Mont.	-	-	-	-	29	34	2	1	-	1	-	-
Idaho	1	-	-	-	-	21	-	1	-	-	-	-
Wyo	-	i	-	-	18	16	3	-	-	1	-	-
Colo	2	1	-	-	266	304	3	3	-	1	-	-
N Mex	-	-	1	-	74	122	3	6	2	-	-	-
Ariz	1	2	1	-	324	236	7	5	4	1	1	-
Utah	-	-	-	-	44	35	1	1	-	-	-	-
Nev	3	-	-	-	138	171	6	3	-	-	-	-
PACIFIC	142	13	4	-	4.613	4.013	187	106	20	54	3	13
Wash	6	4	-	-	147	271	20	16	7	2	-	-
Oreg	2	-	-	-	150	224	38	2	2	?	-	-
Calif	132	9	3	-	4,167	3,394	126	84	11	52	3	13
Alaska	-	-	1	-	90	75	-	-	-	-	-	-
Hawaii	2	-	-	-	59	49	3	4	-	-	-	-
Guam	-	U	-	-	0	6	U	U	U	U	U	-
PR	-	2	-	-	60	23	1	9	-	1	-	-
VI.	-	U	-	-	-	13	U	U	U	U	U	-
Pac. Trust Terr.	-	U	-	-	-	-	U	U	U	U	U	-
Amer Samoa	-	U	-	-	-	-	U	U	U	U	U	-

N Not notifiable

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
January 11, 1986 and January 12, 1985 (2nd Week)

Reporting Area	Malaria	Measles (Rubeola)					Menin- gococcal Infections Cum. 1986	Mumps		Pertussis			Rubella		
		Indigenous		Imported *		$\begin{aligned} & \text { Total } \\ & \hline \text { Cum. } \\ & 1985 \end{aligned}$									
	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$			1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$
UNITED STATES	13	25	25	2	2	15	89	47	56	25	47	39	5	6	9
NEW ENGLAND	-	-	-	-	-	-	7	2	2	2	4	-	-	-	1
Maine	-	-	-	-	-	-	3	-	2	2	1	-	-	-	-
$\mathrm{N} . \mathrm{H}$. Vt.	-	-	-	-	-	-	-	1	1	2	2	-	-	-	1
VH. Mass.	-	-	-	-	-	-	2	-	-	-	1	-	-	-	-
Mass.	-	-	-	-	-	-	-	i	1	-	1	-	-	-	-
Conn.	-	-	-	-	-	-	2	-	1	-	-	-	-	-	-
MID ATLANTIC	2	-	-	18	1	-	15	5	5	12	14	2	1	1	4
Upstate N.Y.	-	-	-	1 §	1	-	-	2	2	8	8	1	1	1	4
N.Y. City	1	-	-	-	-	-	8	2	-	-	8	1	,		3
N.J.	-	-	-	-	-	-	2	2	2	-	-	.	-	-	1
Pa .	1	-	-	-	-	-	5	1	1	4	6	-	-	-	,
E.N. CENTRAL	-	-	-	-	-	9	9	26	26	-	1	18	-	-	-
Ohio	-	-	-	-	-	-	5	,		-	1	3	-	-	-
Ind.	-	-	-	-	-	-	1	-	-	-	-	8	-	-	-
III.	-	-	-	-	-	-	,	23	23	-	-	.	-	-	.
Mich. Wis.	-	-	-	-	-	9	3	3	3	-	1	7	-	-	-
W.N. CENTRAL	-	20	20	-	-	-	5	4	5	2	6	1	-	-	-
Minn.	-	-	-	-	-	-		.	-	1	3	,	.	-	-
lowa	-	-	-	-	-	-	1	-	1	1	1	-	-	-	-
Mo.	-	-	-	-	-	-	4	1	1	-	,	.	-	-	-
N. Dak.	-	-	-	-	-	-		1	.	-	-	-	.	.	.
S. Dak.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nebr.	-	0^{-}	-	-	-	-	-	-	-	-	-	-	-	-	-
Kans.	-	20	20	-	-	-	-	3	3	1	2	1	-	-	.
S. ATLANTIC	2	-	-	-	-	-	9	6	9	1	5	2	-	-	1
Del.	-	-	-	-	-	.	9	6	-	1	5	2	-	-	1
Md.	-	-	-	-	-	-	-	-	.	.	.	1	-	-	-
D.C.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Va .	2	-	-	-	-	-	1	1	3	-	2	-	-	-	-
W. Va.	-	-	-	-	-	-	1	4	5	-	2	-	-	-	-
N.C.	-	-	-	-	-	-	4	-	-	-	2	1	-	-	-
S.C.	-	-	-	-	-	-	4	1	1	1	1	-	-	-	1
Ga.	-	-	-	-	-	-	-	.	-	-	-	-	-	-	-
Fla.	-	-	-	-	-	-	.	-	.	-	-	-	-	-	-
E.S. CENTRAL	-	-	-	-	-	-	11					-	-	1	-
Ky.	-	-	-	-	-	-	6	2	2	1	1	-	-	1	-
Tenn.	-	-	-	-	-	-	1		2	,	1	.	-	.	-
Ala.	-	-	-	-	-	-	4	-	-	1	1	-	-	-	-
W.S. CENTRAL	-	-	-	-	-	-	2	-	-						
Ark.	-	-	-	-	-	-	2	-	-	-	-	3 3	-	-	-
La.	-	-	-	-	-	.	-	-	.	-	-	3	-	-	-
Okla.	-	-	-	-	-	.	2	N	N	-	-	-	-	-	-
Tex.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.
MOUNTAIN	-	-	-	-	-	1	7	-	3	1	4	1			
Mont.	-	-	-	-	-	1	1	-	3	1	4	1	-	-	-
Idaho	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
Wyo.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Colo.	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
N. Mex.	-	-	-	-	-	-	2	N	N	i	1	1	-	-	-
Ariz.	-	-	-	-	-	-	1	N	N 2	1	2	1	-	-	-
Utah	-	-	-	-	-	-	1	-	1	-	2	-	-	-	-
Nev.	-	-	-	-	-	-	2	-	-	-	.	-	-	-	-
PACIFIC	9	5	5	1	1	5	24	2	4			12	4		
Wash.	-		5	,		1	24 7	2	$\stackrel{4}{4}$	3	5	12	4	4	3
Oreg.	9	5	5	it	1	-	3	N	N	3	5	-	-	-	-
Calif.	9	5	5	$1{ }^{\dagger}$	1	4	13	2	4	2	5	12	4	4	3
Alaska Hawaii	-	-	-	-	-	$-$	1	-	-	-	-	.	-		3
			-		-	-	-	-	-	-	-	-	-	-	-
Guam	-	U	-	U			-	U							
P.R.	-	-	-	-	-	7	-	-	i	-	-	-	U	-	-
V.I.	-	U	-	U	-	7	-	u	1	u	-	-	U	-	-
Pac. Trust Terr.	-	U	-	U	-	-	-	U	-	U	-	-	U	-	-
Amer Samoa	-	U	-	U	-	-	-	U	-	U	-	-	U	-	-

For measles only, imported cases includes both out-of-state and international importations.
N. Not notifiable

U: Unavailable

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending January 11, 1986 and January 12, 1985 (2nd Week)

Reporting Area	Syphilis (Civilian) (Primary \& Secondary)		Toxic- shock Syndrome	Tuberculosis		Tularemia Cum. 1986	Typhoid Fever Cum. 1986	Typhus Fever (Tick-borne) (RMSF) Cum 1986	Rabies. Animai Cum. 1986
	$\begin{aligned} & \text { Cum. } \\ & 1986 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1985 \end{aligned}$	1986	$\begin{aligned} & \text { Cum. } \\ & 1986 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$				
UNITED STATES	634	686	4	372	375	3	7	2	119
NEW ENGLAND	15	15	1	9	15	-	1	1	-
Maine	-	-	-	1	1	-	-	-	-
N.H.	-	-	-	-	3	-	-	-	
Vt	\cdots	;	-	1	-	-	-	-	
Mass.	6	7	1	-	9	-	1	1	-
R.	-	-	-	-	-	-	-	-	
Conn	9	8	-	7	2	-	-	-	-
MID ATLANTIC	74	78	-	83	101	-	2	-	11
Upstate NY	1		-	10	5	-		-	3
NY City	57	57	-	33	62	-	2	-	-
NJ.	13	18	-	23		-	-	-	
Pa .	3	3	-	17	34	-	-	-	8
en central	8	29	1	39	43	-	2	-	2
Ohio		3	1	7	14	-	-	-	
Ind	8	4	-	27	1	-	-	-	-
III	-	13	-	27	28	-	-	-	-
Mich.	-	6	-	-	-	-	2	-	1
Wis	-	3	-	5	-	-	-	-	1
wn central	6	9	1	11	6	3	-	-	6
Minn	1	-	-	1	,	-	-	-	-
lowa	2	1	-	-	4	1	-	-	5
Mo	1	6	-	2	-	2	-	-	-
N Dak	2	-	-	1		-	-	-	1
S Dak	-	-	1	-	1	-	-	-	-
Nebr	-	1	-	-	-	-	-	-	-
Kans	-	1	-	7	1	-	-	-	-
S ATLANTIC	160	148	-	70	49	-	-	-	23
Del.	-	2	-	-	1	-	-	-	
Md	17	19	-	7	3	-	-	-	14
DC	7	5	-	6	4	-	-	-	-
Va	26	10	-	-	$\overline{7}$	-	-	-	
W Va.	1	-	-	17	7	-	-	-	1
NC	19	28	-	17	4	-	-	-	
S C.	38	22	-	8	14	-	-	-	2
Ga		.	-	-	-	-	-	-	6
Fla	52	62	-	32	16	-	-	-	
es central	40	72	-	40	37	-	-	1	3
Ky	3	2	-	4	8	-	-	-	
Tenn	18	20	-	3	10	-	-	;	
Ala	19	19	-	33	19	-	-	1	3
Miss	-	31	-	.	-	-	-	-	
w S central	168	161	-	15	10	-	-	-	8
Ark	10	10	-	9	-	-	-	-	1
la	33	39	-	-	8	-	-	-	
Okla	-	2	-	6	-	-	-	-	1
Tex.	125	110	-	-	2	-	-	-	6
mountain	14	35	1	9	5	-	-	-	52
Mont.	-	.	-	-	-	-	-	-	22
daho	-	-	1	-	-	-	-	-	
Wyo.	-	-	-	-	-	-	-	-	26
Colo	8	6	-	-	-	-	-	-	
N Mex	-	-	-	2	-	-	-	-	1
Ariz	6	29	-	3	4	-	-	-	3
Utah	.	-	-	-	-	-	-	-	-
Nev	-	-	-	4	1	-	-	-	-
PACIFIC	149	139	-	96	109	-	2	.	14
Wash.	.	4	.	7	4	-	.	.	
Oreg	3	8	-	5	1	-	-	.	14
Calif	144	123	-	82	101	-	1	-	14
Alaska	-	-	-	-	-	-	-	-	-
Hawaii	2	4	-	2	3	-	1	-	-
Guam	-	-	u	-	2	-	-	-	-
R.	25	3	-	6	2	-	-	-	1
VI.		-	U	-	.	-	-	-	-
Pac. Trust Terr.	.	-	U	-	-	-	-	-	-
Amer Samoa	-	-	U	-	.	.	-	-	-

U Unavailable

TABLE IV. Deaths in 121 U.S. cities,* week ending
January 11, 1986 (2nd Week)

Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\& } 1^{\circ-} \\ & \text { Total } \end{aligned}$	Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&10 } \\ & \text { Total } \end{aligned}$
	$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	850	566	174	57	18	35	81	S. ATLANTIC	1,631	1,002	411	122	47	47	74
Boston, Mass.	227	119	61	24	9	14	31	Atlanta, Ga	268	155	79	25	7	2	6
Bridgeport, Conn.	65	45	11	5	2	2	3	Baltimore, Md.	250	156	58	19	9	8	7
Cambridge, Mass.	33	30	3	-	-	-	4	Charlotte, N.C.	126	82	30	7	3	4	10
Fall River, Mass.	32	26	5	1	-	-	-	Jacksonville, Fla.	160	101	37	8	10	4	12
Hartford, Conn.	84	54	20	7	1	2	4	Miami, Fla.	167	96	43	19	5	4	2
Lowell, Mass.	37	29	7	1	-	.	6	Norfolk, Va.	81	47	23	6	1	4	5
Lynn, Mass.	24	19	5	-	-	-	-	Richmond, Va.	111	64	27	12	5	3	6
New Bedford, Mass.	. 25	20	5	-	-	-	3	Savannah, Ga	56	41	10	2	5	3	3
New Haven, Conn. Providence, RI.	56	32	11	4	1	8	2	St. Petersburg, Fla.	121	91	24	3	2	1	7
Providence, R.I.	102	73	23	3	-	3	12	Tampa, Fla.	110	64	28	7	2	8	10
Somerville, Mass.	5 45	4 3	1	-	-		1	Washington, D.C.	124	63	41	11	3	5	4
Springfield, Mass.	45	34	5	3	,	2	7	Wilmington, Del	57	42	11	3	.	1	2
Waterbury, Conn.	41	30	5	2	4	-	5	Wilmington, Del							
Worcester, Mass.	74	51	12	7	-	4	3	E.S. CENTRAL	1.067	687	239	77	27	37	57
								Birmingham, Ala.	154	88	40	11	5	10	5
MID ATLANTIC Albany, N.Y.	3.053	2,042	609	276	69	55	173	Chattanooga, Tenn.	106	66	27	6	4	3	5
Albany, N.Y. Allentown, Pa .	64 15	41	15	5	2	1	5	Knoxville, Tenn.	110	76	19	10	4	1	7
Buffalo, N.Y.	15 126	12 91	20	1 4	1	8	11	Louisville, Ky.	124	91 133	26	5	10	1	5 17
Camden, N.J.	63	42	12	5	2	2	3	Memphis, Te, Mobile, Ala.	216 99	133 62	52 25	20 9	10	1 3	17 4
Elizabeth, N.J.	27	22	3	2	-	-	2	Montgomery, Ala	85	55	15	3	2	10	4
Erie, Pa.t	56	39	14	1	1	1	2	Nashville. Tenn.	173	116	35	13	1	8	10
Jersey City, N.J.	58	38	14	1	1	4	1	Nashvile. Tenn.	173	116	35	13	1	8	10
N.Y. City, N.Y.	1.635	1,065	318	190	41	21	96	W.S. CENTRAL	1.550	940	357	148	57	48	80
Newark, N.J.	99	47	29	15	3	4	3	Austin, Tex.	. 73	42	15	11	4	1	9
Paterson, N.J.	36	29	3	3	-	1	6	Baton Rouge, La	48	30	11	3	1	3	2
Philadelphia, Pa.	408	274	94	27	5	8	18	Corpus Christi, Tex.	48	30	10	3	3	2	4
Pittsburgh, Pa.t	64 35	42	14	3	4	1	3	Dallas. Tex.	274	158	70	24	9	13	6
Reading, Pa. Rochester N.Y	35	25	10	-	-	-	2	El Paso. Tex.	83	50	16	7	8	2	7
Rochester, N.Y. Schenectady, N.Y.	135 42	101 30	23	7 3	3	1	8	Fort Worth, Tex.	157	103	33	13	3	5	10
Schenectady, N.Y.	42 24	30 18	7 4	3 2	2	-	3	Houston, Tex Little Rock, Ark	292 94	171	75	34	8	4	7
Syracuse, N.Y.	90	66	17	3	1	3	5	New Orleans, La.	94	60	18	9 9	3	4 1	8
Trenton, N.J.	11	7	2	2	-		1	San Antonio, Tex.	242	147	65	16	9	5	19
Utica, N.Y.	26	23	3		-		1	Shreveport, La.	73	42	13	10	4	4	2
Yonkers, N.Y.	39	30	6	2	1	-	2	Tulsa, Okla.	102	67	17	9	5	4	5
E.N. CENTRAL	2.855	1.998	520	160	81	95	138	MOUNTAIN	823	544	165	58	27	27	44
Akron, Ohio	62	39	11	3	4	5	3	Albuquerque. N. Mex	108	74	15	8	4	5	7
Canton. Ohio	45	28	14	3	-		10	Colo. Springs, Colo.	56	37	12	6	1	-	6
Chicago, III.§	553	462	11	26	16	37	16	Denver, Colo.	150	91	34	15	5	5	6
Cincinnati, Ohio	142	100	36	3	2	1	18	Las Vegas, Nev.	94	59	27	6	1	1	7
Cleveland, Ohio	223	149	51	13	6	4	1	Ogden, Utah	25	22	1	1	-	1	3
Columbus, Ohio	168	97	48	11	8	4	8	Phoenix, Ariz.	172	115	35	10	9	3	3
Dayton, Ohio	169	104	51	6	4	4	1	Pueblo, Colo	22	15	6	1	-	-	1
Detroit, Mich.	376	220	79	47	20	10	10	Salt Lake City, Utah	56	35	11	2	4	4	1
Evansville, Ind.	67	48	12	3	2	2	6	Tucson, Ariz.	140	96	24	9	3	8	10
Fort Wayne, Ind.	98	67	19	7	3	2	4	Tucson, Ariz.							
Gary, Ind.	33	20	7	1	5		3	PACIFIC	2,565	1.779	478	169	72	61	165
Grand Rapids, Mich.	. 47	35	8	1	5	3	9	Berkele, Calif.	26	19	4	1	1	1	2
Indianapolis, Ind.	241	167	49	12	5	8	4	Fresno, Calif.	120	82	21	7	3	7	18
Madison, Wis.	25	17	4	2	.	2	3	Glendale, Calif	27	20	5	1	1	-	4
Milwaukee, Wis.	213	153	45	11	-	4	8	Honolulu, Hawaii	94	69	13	4	5	3	4
Peoria, III.	43	35	7	-	-	1	7	Long Beach. Calif.	112	71	25	10	2	4	16
Rockford, III.	74	58	10	2	3	1	9	Los Angeles, Calif	711	487	138	51	23	6	22
South Bend, Ind.	66	39	18	6	2	1	6	Oakland, Calif.	90	64	12	6	4	4	4
Toledo, Ohio	135	98	30	3		4	9	Pasadena, Calif.	60	46	7	2	-	5	3
Youngstown, Ohio	75	62	10	3	1	2	3	Portland, Oreg.	182	127	38	10	5	2	15
								Sacramento, Calif.	168	111	34	11	6	6	11
W.N. CENTRAL	910	643	171	44	18	34	56	San Diego, Calif.	229	165	38	15	6	5	21
Des Moines, lowa	77	58	12	4	-	3	8	San Francisco, Calif.	188	130	29	19	3	7	9
Duluth, Minn.	34	24	8	2	2	-	4	San Jose, Calif.	197	134	41	13	5	4	15
Kansas City, Kans.	48	36	6	4	2		3	Seattle, Wash.	214	149	41	14	6	4	6
Kansas City, Mo.	138	96	29	5	2	6	11	Spokane, Wash.	75	48	22	2	1	2	3
Lincoln. Nebr.	34	23	9	1	-	1	3	Tacoma, Wash.	72	57	10	3	1	1	12
Minneapolis, Minn.	115	77	25	7	3	3	4		+						
Omaha, Nebr.	99	67	22	4	1	5	6	TOTAL	15,304	10.201	3.124	1.111	416	439	868
St. Louis, Mo.	169	125	26	6	5	7	8								
St. Paul, Minn.	80	60	12	4	1	3	3								
Wichita, Kans.	116	77	22	7	4	6	6								

[^2]Table V. Estimated years of potential life lost before age 65 and cause-specific mortality, by cause of death - United States, 1984

Cause of mortality (Ninth Revision ICD)	Years of potential life lost by persons dying in 1984*	$\begin{gathered} \text { Cause-specific mortality } \\ \text { (rate } / 100,000 \text {) } \end{gathered}$
ALL CAUSES		
(Total)	11,761,000	866.7
Unintentional injuries§ (E800-E949)	2,308,000	40.1
Malignant neoplasms (140-208)	1,803,000	191.6
$\begin{aligned} & \text { Diseases of the heart } \\ & (390-398,402,404-429) \end{aligned}$	1,563,000	324.4
Suicide, homicide (E950-E978)	1,247,000	20.6
Congenital anomalies (740-759)	684,000	5.6
$\begin{gathered} \text { Prematurity } \\ (765,769) \end{gathered}$	470,000	3.5
Sudden infant death syndrome (798)	314,000	2.4
Cerebrovascular diseases $(430-438)$	266,000	65.6
Chronic liver diseases and cirrhosis (571)	233,000	11.3
Pneumonia and influenza (480-487)	163,000	25.0
Chronic obstructive pulmonary diseases (490-496)	123,000	29.8
Diabetes mellitus (250)	119,000	15.6

- Years of potential life lost before age 65 for persons dying in the year are derived from the number of deaths in each age category as reported by the National Center for Health Statistics, Monthly Vital Statistics Report (MVSR), Vol. 33, No. 13, September 26, 1985, multiplied by the difference between age 65 years and the age at the midpoint of each category. As a measure of mortality, "Years of potential life lost" underestimate the importance of diseases that contribute to death without being the underlying cause of death.
${ }^{\dagger}$ Cause-specific mortality rates as reported in the MVSR are compiled from a 10% sample of all deaths.
$\S_{\text {Equivalent to accidents and adverse effects. }}$
${ }^{4}$ Category derived from disorders relating to short gestation and respiratory distress syndrome.

Malaria Prophylaxis - Continued

Reported by Malaria Br, Div of Parasitic Diseases, Center for Infectious Diseases, Div of Quarantine, Center for Prevention Svcs, CDC.

References

1. CDC. Revised recommendations for preventing malaria in travelers to areas with chloroquineresistant P. falciparum. MMWR 1985;34:185-90.
2. CDC. Health information for international travel 1985. Atlanta, Georgia: Public Health Service, U.S. Department of Health and Human Services; publication no. (CDC) 85-8280.

Update: Influenza Activity - United States, Worldwide

UNITED STATES

Reports of influenza virus isolates, primarily representing sporadic cases, have begun to increase in the United States. Through January 13, 1986, 16 states have reported influenza isolates this season; 12 states have reported type B isolates; 10 have reported type $A(H 3 N 2)$; and one state, Hawaii, has reported type A(H1N1) (Figure 2).

Arizona, Illinois, Minnesota, South Carolina, and Utah recently reported their first influenza virus isolates this season from patients who became ill in late December or early January. Type B influenza virus was reported from Arizona, South Carolina, and Utah; both type B and $A(H 3 N 2)$ viruses were reported from llinois and Minnesota. In Colorado, where type $A(H 3 N 2)$ virus was isolated earlier this season, type B virus has now been reported. In Pennsylvania, where type B virus had been isolated, type $A(H 3 N 2)$ virus isolates have now been reported.

Alaska, the only state to report widespread outbreaks of influenza-like illness through December, reported a decrease to regional outbreaks for the week ending January 4. Nationwide, reports of influenza-like illness* and reports of deaths associated with pneumonia and influenza from 121 U.S cities have remained below the levels normally associated with extensive outbreaks.

Outbreaks of influenza $A(H 3 N 2)$ in two long-term-care facilities in upstate New York have been reported. The first occurred in a facility housing approximately 260 elderly residents, 15

[^3]FIGURE 2. States reporting isolates of influenza virus, by type - United States, October 1985-January 13, 1986

-In Hawaii, type A(H1N1) has also been isolated.

Influenza - Continued
of whom developed influenza-like illnesses between December 29, 1985, and January 3, 1986; throat cultures from five ill residents yielded influenza A(H3N2) viruses. The second outbreak began during the second week of January in a 330-bed nursing home. By January 10, approximately 30 residents had developed influenza-like illnesses. Preliminary results of viral cultures indicate that influenza type $\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$ virus also caused this outbreak. These are the first reported influenza outbreaks affecting elderly persons in U.S. residential health-care facilities this season.

WORLDWIDE

From September through December 1985, influenza virus types $A(H 3 N 2), A(H 1 N 1)$, and B were isolated from various parts of the Northern Hemisphere and the tropics. Type A(H3N2) isolates have usually been associated with sporadic activity, although several countries reported outbreaks. Sporadic cases of type B influenza were reported from several countries, while type $A(H 1 N 1)$ was isolated only from sporadic cases in China and Hong Kong.

Type $A(H 3 N 2)$. Widespread outbreaks of type $A(H 3 N 2)$ influenza were reported in Japan, beginning in mid-October. In England, an explosive outbreak affecting approximately 50\% of students occurred in a boarding school. Localized outbreaks were documented in Czechoslovakia. In Brazil, localized outbreaks were reported among the general population of Rio de Janeiro during October, but type $\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$ isolates from other parts of the country were associated only with sporadic cases. Jamaica, China, Switzerland, Italy, the German Democratic Republic, and the Soviet Union also reported sporadic isolates of type $A(H 3 N 2)$ viruses.

Type B. Isolates of type B virus associated with sporadic activity have been reported from Brazil, China, Korea, India, and Poland.

Type $\mathbf{A}($ H1N1). In most parts of the world, influenza type $A(H 1 N 1)$ has circulated at very low levels since early 1984. In mainland China, however, more than 70% of influenza viruses isolated from May to October 1985 were type $A(H 1 N 1)$, although the level of activity has remained low. A few type $\mathbf{A}(\mathrm{H} 1 \mathrm{~N} 1)$ viruses have also been isolated in Hong Kong.
Reported by J Wilkinson, MD, Good Samaritan Medical Center, Phoenix, D Woodall, Health Svcs Laboratory, GG Caldwell, MD, State Epidemiologist, Arizona Dept of Health Svcs; B Haslam, Bureau of Epidemiology, F Urry, PhD, State Public Health Lab, CR Nichols, MPA, State Epidemiologist, Utah Dept of Health; E Saxton, PhD, Viral Laboratory University of Chicago, R Murphy, Virology Laboratory, BJ Francis, MD, State Epidemiologist, Illinois Dept of Public Health; D Stiepan, MPH, H Markowitz, MD, State Laboratory Director, J Braun, MS, MT Osterholm, PhD, State Epidemiologist, Minnesota Dept of Health; A DiSalvo, MD, State Public Health Laboratory Director, RV Parker, DVM, State Epidemiologist, South Carolina Dept of Health; G Meiklejohn, MD, University of Colorado, Denver, SW Ferguson, PhD, State Epidemiologist, Colorado Dept of Health; J Schivers, Regional Clinical Laboratory of Pennsylvania, Erie, B Kleeger, PhD, State Public Health Laboratory, EJ Witte, VMD, State Epidemiologist, Pennsylvania State Dept of Health; DL Morse, MD, State Epidemiologist, New York State Dept of Health; participating physicians of the American Academy of Family Physicians; Virus Diseases Unit, World Health Organization, Geneva, Switzerland; Statistical Svcs Br, Div of Surveillance and Epidemiologic Studies, Div of Field Svcs, Epidemiology Program Office, WHO Collaborating Center for Influenza, Influenza Br, Div of Viral Diseases, Center for Infectious Diseases, CDC.

Changes in Premature Mortality - United States, 1983-1984

Premature mortality in the United States, as measured by years of potential life lost before age 65 (YPLL), increased from 1983 to 1984 for the first time since 1980. Total YPLL from all causes of death increased from $11,712,000$ in 1983 to $11,761,000$ in 1984, a 0.4% increase. The rate of YPLL per 1,000 persons under 65 years old, however, decreased by 0.4%

Premature Mortality - Continued
from 1983's level to 56.5/1,000 persons. An increase of 1.5 million persons under 65 years of age accounts for this discrepancy.

The relative rankings of the leading causes of YPLL did not change substantially from 1983 to 1984. The only change was cerebrovascular diseases replacing chronic liver diseases as the eighth leading cause of YPLL. Unintentional injuries (accidents) continue to head the list, accounting for 20% of the total YPLL, followed by malignant neoplasms (15\%), diseases of the heart (13%), and suicides/homicides (11\%).

The rate of YPLL per 1,000 persons increased for eight of the 12 leading causes (Figure 3). The largest proportionate increase in the rate of YPLL was recorded for cerebrovascular diseases, up 13.1\%. Increases in YPLL rates were also noted for prematurity, up 3.3\%; sudden infant death syndrome, 2.7\%; pneumonia and influenza, 2.6\%; and diabetes mellitus, 1.8%. In contrast, the rate of YPLL for chronic liver diseases and cirrhosis decreased by 7.4%; diseases of the heart declined 3.6%; chronic obstructive pulmonary diseases and allied conditions, 3.3\%; and malignant neoplasms, 1.3\%.

Reported by Epidemiologic Studies Br, Div of Surveillance and Epidemiologic Studies, Epidemiology Program Office, CDC.
Editorial Note: With this issue, CDC announces a change in the method of calculation of YPLL to include causes of mortality in the first year of life. The relatively high age-specific

FIGURE 3. Percent change from 1983 to 1984 in rates of years of potential life lost before age 65 - United States

[^4]
Premature Mortality - Continued

death rate of these infants, combined with the years of life remaining before age 65, adds two new causes to the list of leading causes of YPLL - sudden infant death syndrome (ICD code 798) and deaths attributable to prematurity, including neonatal respiratory distress syndrome (ICD code 769) and disorders relating to short gestation and unspecified low birthweight (ICD code 765). The updated Table V appears on page 27 of this issue.

The inclusion of deaths in the first year of life does not account for the increase in total YPLL from 1983 to 1984. Although total YPLL decreased each year from 1980 to 1984, the slight increase in 1984 is present when YPLL is calculated by either the birth-to-age-65-years or the age 1 - to 65 -years method (Figure 4). The rate of YPLL per 1,000 persons, however, has decreased each year since at least 1979 with both methods of calculation and now stands 12.3% below the 1979 level when measured from age 1 year to 65 years, and 14.1% when measured from birth to age 65 years.

Considerable variability continues to be demonstrated in the year-to-year comparison of YPLL rate due to specific causes of mortality. The rate of YPLL attributable to cerebrovascular diseases, for example, increased by 13.1% in 1984, reversing the 12.4% decline in the previous year. In contrast, the YPLL rate for unintentional injuries, which has consistently decreased from 1979 until 1984, increased by 0.4% in 1984, but remains 22.5% below the 1979 level.

FIGURE 4. Total years of potential life lost before age 65, including and excluding deaths in the first year of life, by year - United States, 1979-1984

FIGURE I. Reported measles cases - United States, weeks 50-52, 1985, and week 1, 1986

The Morbidity and Mortality Weokly Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington. D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks. environmental hazards, or other public health problems of current interest to health officials. Such reports and any othermat ters pertaining to editorial or other textual considerations should be addressed to: ATTN: Editor, Morbidity and Mortality Weekly Report, Centers for Disease Control. Atlanta. Georgia 30333.

Director, Centers for Disease Control	Editor
James O. Mason, M.D., Dr.P.H.	Michael B. Gregg, M.D.
Director, Epidemiology Program Office	Assistant Editor
Carl W. Tyler, Jr., M.D.	Karen L. Foster, M.A.

ゅU.S. Government Printing Office: 1986-746-149/21037 Region IV

DEPARTMENT OF

HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHS 396

[^0]: - Percent increase.
 ${ }^{\dagger}$ Includes persons born in countries in which most AIDS cases have not been associated with known risk factors.

[^1]: -Includes persons born in countries in which most AIDS cases have not been associated with known risk factors.

[^2]: Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more.A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included

 - Pneumonia and influenza.
 \dagger Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete
 counts will be available in 4 to 6 weeks
 $t+$ Total includes unknown ages.
 § Data not available. Figures are estimates based on average of past 4 weeks.

[^3]: *Cases reported by those members of the American Academy of Family Physicians Research Panel who serve as sentinel physicians for influenza.

[^4]: -Sudden infant death syndrome.
 ${ }^{\dagger}$ Chronic obstructive pulmonary diseases and allied conditions.

